ฟังก์ชันขั้นบันได คือฟังก์ชันบนจำนวนจริงซึ่งเกิดจากการรวมกันระหว่างฟังก์ชันคงตัวจากโดเมนที่แบ่งออกเป็นช่วงหลายช่วง กราฟของฟังก์ชันจะมีลักษณะเป็นส่วนของเส้นตรงหรือรังสีในแนวราบเป็นท่อน ๆ ตามช่วง ในระดับความสูงต่างกัน อ่านต่อ
วันเสาร์ที่ 9 กันยายน พ.ศ. 2560
ฟังก์ชันค่าสัมบูรณ์
ฟังก์ชันค่าสัมบูรณ์
ฟังก์ชันค่าสมบูรณ์ถูกกำหนดโดยกฎซึ่งแบ่งออกเป็นสองกรณี
ค่าฟังก์ชันสมบูรณ์ | | จะกำหนดโดย
ค่าฟังก์ชันสมบูรณ์ | | จะกำหนดโดย
ฟังก์ชันเอกซ์โพเนนเชียล
ฟังก์ชันนั้นมีอยู่หลายรูปแบบ แต่ละแบบก็มีการตั้งชื่อไม่เหมือนกัน ฟังก์ชันเอกซ์โพเนนเชียลก็เป็นอีกรูปแบบหนึ่งของฟังก์ชันซึ่งเราจะไปดูว่าฟังก์ชันเอกซ์โพนเนนเชียลนั้นมีรูปแบบอย่างไร ก็ต้องไปดูนิยามของมันครับ ว่านิยามของฟังก์ชันเอกซ์โพเนนเชียลนั้นเป็นอย่างไร อ่านต่อ
ฟังก์ชันกำลังสอง
ฟังก์ชันกำลังสอง คือ ฟังก์ชันที่อยู่ในรูป เมื่อ a,b,c เป็นจำนวนจริงใดๆ และ ลักษณะของกราฟของฟังก์ชันนี้ขึ้นอยู่กับค่าของ a , b และ c และเมื่อค่าของ a เป็นบวกหรือลบ จะทำให้ได้กราฟเป็นเส้นโค้งหงายหรือคว่ำ
ดังรูป
ฟังก์ชันเชิงเส้น
คือ ฟังก์ชันที่อยู่ในรูป y = ax+b เมื่อ a ,b เป็นจำนวนจริง และ กราฟของฟังก์ชันเชิงเส้นจะเป็นเส้นตรง
ตัวอย่างของฟังก์ชันเชิงเส้น ได้แก่
1) y = x
ฟังก์ชัน y = ax + b เมื่อ a = 0 จะได้ฟังก์ชันที่อยู่ในรูป y = b ซึ่งมีชื่อเรียกว่า ฟังก์ชันคงตัว (constant function) กราฟของฟังก์ชันคงตัวจะเป็นเส้นตรงที่ขนานกับแกน X ตัวอย่างของฟังก์ชันคงตัว อ่านต่อ
4. ความสัมพันธ์และฟังก์ชัน
ในวิชาคณิตศาสตร์การจับคู่ระหว่างสิ่งสองสิ่งที่มีความสัมพันธ์กันจะใช้คู่อันดับ
เป็ นสัญลักษณ์แทนสิ่งสองสิ่งที่มีความสัมพนัธ์กนั เช่น
(2,4)
หมายถึง 2 มีความสัมพนัธ์กบั 4
ในกรณีทวั่ ไป เราจะเขียนคู่อนัดบั ในรูป
(a,b)
เรียก
a อ่านต่อ
ค่าสัมบูรณ์ของจำนวนจริง
ค่าสมบูรณ์ของจำวนจริง a : เมื่อกำหนดให้ a เป็นจำนวนจริงระยะจากจุด 0 ถึงจุดที่แทนที่จำนวนจริง a เขียนแทนด้วย |a|
เช่น |2| หมายถึง ระยะจากจุด 0 ถึงจุดที่แทนจำนวน 2 ซึ่งเท่ากับ 2 หน่วย
|-2| หมายถึง ระยะจุด 0 ถึงจุดที่แทนจำนวน -2 ซึ่งเท่ากับ 2 หน่วย อ่านต่อ
เช่น |2| หมายถึง ระยะจากจุด 0 ถึงจุดที่แทนจำนวน 2 ซึ่งเท่ากับ 2 หน่วย
|-2| หมายถึง ระยะจุด 0 ถึงจุดที่แทนจำนวน -2 ซึ่งเท่ากับ 2 หน่วย อ่านต่อ
การไม่เท่ากัน
การเปรียบเทียบจำนวนสองจำนวนว่ามากกว่าหรือน้อยกว่าได้ โดยเขียนอยู่ในรูปประโยคสัญลักษณ์ เช่น n แทนจำนวนเต็ม
n > 5 หมายถึง จำนวนเต็มทุกจำนวนที่มากกว่า 5 เช่น 6 ,7 ,8 ,... อ่านต่อ
n > 5 หมายถึง จำนวนเต็มทุกจำนวนที่มากกว่า 5 เช่น 6 ,7 ,8 ,... อ่านต่อ
การแก้สมการกำลังสองตัวแปรเดียว
ใจความสำคัญของเรื่องนี้ อยู่ที่การแก้สมการกำลังสองตัวแปรเดียว ซึ่งในการแก้สมการกำลังสองตัวแปรเดียวนั้น ไม่ยากครับ แต่ต้องฝึกทำบ่อยๆ ทำโจทย์เยอะๆครับ ซึ่งการแก้สมการกำลังสองตัวแปรเดียวเพื่อหาคำตอบของสมการนั้น มีหลายวิธี อ่านต่อ
การแยกตัวประกอบพหุนาม
การแยกตัวประกอบ (อังกฤษ: factorization) ในทางคณิตศาสตร์ หมายถึงการแบ่งย่อยวัตถุทางคณิตศาสตร์ (เช่น จำนวน พหุนาม หรือเมทริกซ์) ให้อยู่ในรูปผลคูณของวัตถุอื่น ซึ่งเมื่อคูณตัวประกอบเหล่านั้นเข้าด้วยกันจะได้ผลลัพธ์ดังเดิม ตัวอย่างเช่น จำนวน 15 สามารถแยกตัวประกอบให้เป็นจำนวนเฉพาะได้เป็น 3 × 5 และพหุนาม สามารถแยกได้เป็น อ่านต่อ
การบวกและการคูณในระบบจำนวนจริง
ในระบบจำนวนจริง มีเอกลักษณ์การบวกจำนวนเดียวคือ 0 เมื่อ a เป็นจำนวนจริงใดๆ a+0 = a = 0+a
ในระบบจำนวนจริง อินเวอร์สการบวกของจำนวนจริง a หมายถึง จำนวนจริงที่บวก a แล้วได้ผลลัพธ์เป็น 0 ใช้สัญลักษณ์ “-a” แทนอินเวอร์สการบวกของจำนวนจริง a อ่านต่อ
สมบัติของจำนวนจริงเกี่ยวกับการบวกและการคูณ
จำนวนตรรกยะ (rational number) เป็นจำนวนจริงที่สามารถเขียนได้ในรูปเศษส่วนของจำนวนเต็มที่ตัวส่วนไม่เป็นศูนย์ และเขียนในรูปทศนิยมซ้ำได้จำนวนอตรรกยะ (irrational number) เป็นจำนวนจริงที่ไม่ใช่จำนวนตรรกยะซึ่งไม่สามารถเขียนในรูปทศนิยมซ้ำหรือเศษส่วนของจำนวนเต็มที่ตัวส่วนไม่เป็นศูนย์แต่เขียนได้ในรูปทศนิยมไม่ซ้ำ และสามารถกำหนดค่าโดยประมาณได้การเขียนเศษส่วนในรูปทศนิยม อ่านต่อ
3.จำนวนจริง
จำนวนจริง คือจำนวนที่สามารถจับคู่หนึ่งต่อหนึ่งกับจุดบนเส้นตรงที่มีความยาวไม่สิ้นสุด (เส้นจำนวน) ได้ คำว่า จำนวนจริง นั้นบัญญัติขึ้นเพื่อแยกเซตนี้ออกจากจำนวนจินตภาพ จำนวนจริงเป็นศูนย์กลางการศึกษาในสาขาคณิตวิเคราะห์จำนวนจริง (real analysis) อ่านต่อ
สมัครสมาชิก:
บทความ (Atom)