วันอังคารที่ 25 กรกฎาคม พ.ศ. 2560

การให้เหตุผลแบบนิรนัย

เป็นการนำความรู้พื้นฐานซึ่งอาจเป็นกฎ ข้อตกลง ความเชื่อ หรือบทนิยาม ซึ่งเป็นสิ่งที่รู้มาก่อน และยอมรับว่าเป็นความจริงเพื่อหาเหตุผลนำไปสู่ข้อสรุป เป็นการอ้างเหตุผลที่มีข้อสรุปตามเนื้อหาสาระที่อยู่ภายในขอบเขตของข้ออ้างที่กำหนด อ่านต่อ

ผลการค้นหารูปภาพสำหรับ การให้เหตุผลแบบนิรนัย คือ

การให้เหตุผลแบบอุปนัย

  การให้เหตุผลแบบอุปนัย (Inductive Reasoning) เกิดจากการที่มีสมมติฐานกรณีเฉพาะ หรือเหตุย่อยหลายๆ เหตุ เหตุย่อยแต่ละเหตุเป็นอิสระจากกัน มีความสำคัญเท่าๆ กัน และเหตุทั้งหลายเหล่านี้ไม่มีเหตุใดเหตุหนึ่งแสดงให้เห็นถึงความเป็นสมมติฐานกรณีทั่วไป หรือกล่าวได้ว่า การให้เหตุผลแบบอุปนัยคือการนำเหตุย่อยๆ แต่ละเหตุมารวมกัน อ่านต่อ

ผลการค้นหารูปภาพสำหรับ การให้เหตุผลแบบอุปนัย คือ

2. การให้เหตุผล

 3.1การให้เหตุผลแบบอุปนัย (Inductive Reasoningเป็นการสรุปผลในการค้นหาความจริงจากการสังเกต  หรือการทดลองหลายครั้งจากกรณีย่อยๆ แล้วนำมาสรุปเป็นความรู้แบบทั่วไป ซึ่งข้อสรุปที่ไม่จำเป็นต้องถูกต้องทุกครั้ง
         3.2การให้เหตุผลแบบนิรนัย (Deductive Reasoning เป็นการนำสิ่งที่ยอมรับว่าเป็นจริงมาประกอบเพื่อนำไปสู่ข้อสรุปจากสิ่งที่ยอมรับแล้ว อ่านต่อ


                                                    ผลการค้นหารูปภาพสำหรับ การให้เหตุผล คณิตศาสตร์

ยูเนียน อินเตอร์เซกชันและคอมพลีเมนต์ของเซต

  ยูเนียน (Union) มีนิยามว่า เซต A ยูเนียนกับเซต B คือเซตซึ่งประกอบด้วยสมาชิกที่เป็นสมาชิกของเซต A หรือ เซต B หรือทั้ง A และ B สามารถเขียนแทนได้ด้วย สัญลักษณ์ A ∪ B
  อินเตอร์เซกชัน (Intersection) มีนิยามคือ เซต A อินเตอร์เซกชันเซต B คือ เซตซึ่งประกอบด้วยสมาชิกที่เป็นสมาชิกของเซต A และเซต B สามารถเขียนแทนได้ด้วยสัญลักษณ์ A ∩ B
  คอมพลีเมนต์ (Complements) มีนิยามคือ ถ้าเซต A ใดๆ ในเอกภพสัมพัทธ์ U แล้วคอมพลีเมนต์ของเซต A คือ เซตที่ประกอบด้วยสมาชิกที่เป็นสมาชิกของ U แต่ไม่เป็นสมาชิกของ A สามารถเขียนแทนได้ด้วยสัญลักษณ์ A’


ผลการค้นหารูปภาพสำหรับ ยูเนียน อินเตอร์เซกชันและคอมพลีเมนต์ของเซต คือ

ผลการค้นหารูปภาพสำหรับ ยูเนียน อินเตอร์เซกชันและคอมพลีเมนต์ของเซต คือ

ผลการค้นหารูปภาพสำหรับ ยูเนียน อินเตอร์เซกชันและคอมพลีเมนต์ของเซต คือ

สับเซตและเพาเวอร์เซต

 สับเซต
บทนิยาม เซต A เป็นสับเซตของเซต B ก็ต่อเมื่อ สมาชิกทุกตัวของเซต A เป็นสมาชิกของเซต B และสามารถเขียนแทนได้ด้วยสัญลักษณ์ A ⊂B
• เพาเวอร์เซต
บทนิยาม เพาเวอร์เซตของเซต A คือ เซตซึ่งประกอบด้วยสมาชิกที่เป็นสับเซตทั้งหมดของเซต A และสามารถเขียนแทนได้ด้วยสัญลักษณ์ P(A)

ผลการค้นหารูปภาพสำหรับ สับเซตและเพาเวอร์เซต คือ

เอกภพสัมสัมพัทธ์


     เอกภพสัมพัทธ์ ( Relative Universe ) ในการพูดถึงเรื่องใดก็ตามในแง่ของเซต เรามักมีขอบข่ายในการ
พิจารณาสมาชิกของเซตที่จะกล่าวถึง โดยมีข้อตกลงว่าเราจะไม่กล่าวถึงสิ่งใดนอกเหนือไปจากสมาชิก ของ
เซตที่กำหนดขึ้น เช่น ถ้าเรากำหนดเซตของสมาชิกทุกคนในครอบครัวของผู้เรียนเองให้เป็นเซตใหญ่ที่สุด



ผลการค้นหารูปภาพสำหรับ เอกภพสัมพัทธ์คือ

1.เซต

เซต เป็นคาที่ไม่ต้องนิยามความหมาย ( Undefine team ) แต่เราใช้คาว่า เซต แทนกลุ่มของสิ่งของ จานวน หรือสิ่งมีชีวิตที่การกล่วงถึง เช่น กลุ่ม กอง หมู่ เหลา โขลง คณะ พวก ชุด ฯลฯ
เมื่อกล่าวถึงเซต สิ่งที่คำนึงถึงคือ เซตนั้นมีสิ่งใดบ้างที่สอดคล้องกันคากล่าวของเซต สิ่งที่อยู่ภายในเซตเรียกว่า “สมาชิกเซต”